DPVs of degrading bloodstains

DPVs of degrading bloodstains - forensic electrochemistry!

Forensic Chemistry - December 2020

Featured on the front cover of Forensic Chemistry - December 2020

Chemiluminescent reaction with latent bloodstains


Fluorescent hybrid inorganic-organic sol-gel blood substitutes for BPA research & training

Featured on the cover of Forensic Chemistry

FT-ICR MSI of eccrine secretions in latent and chemically washed fingerprints

FT-ICR MSI of eccrine secretions in latent and chemically washed fingerprints

Modelling parent stain size in passive drip simulation

Graphical Abstract-v1

High-speed video analysis of impacts into blood

Featured on the Cover of the Journal of Sol-Gel Science and Technology

Allele peak heights from our degraded and fresh hydrogel tissue simulants


Please note that authors indicated in red are student authors.  denoting undergraduate, ‡ denoting graduate  and * PI

Journal Articles







































Tiessen M‡, Fruehwald HM‡, Easton EB*, Stotesbury T*. Insights into bloodstain degradation and time since deposition estimation using electrochemistry. Frontiers in Analytical Science – Forensic Chemistry. 8 June 2022. https://doi.org/10.3389/frans.2022.900483

Elliott C†, Stotesbury T*, Shafer ABA*. Using total RNA quality metrics for time since deposition estimates in degrading bloodstains. Journal of Forensic Science. 2022. https://doi.org/10.1111/1556-4029.15072

Orr A‡, Wilson P*, Stotesbury T*. Calcium-Alginate Tissue Gels (CATG): Proof-of-Concept Biomaterial Development. Forensic Science International. 2021 Oct 13:111055. https://doi.org/10.1016/j.forsciint.2021.111055

Yeh K†, Castel S‡, Stock NL, Stotesbury T, Burr W*. subMALDI: an open framework R package for processing irregularly-spaced mass spectrometry data. Journal of Open Source Software. 2021 Sept 10. https://joss.theoj.org/papers/10.21105/joss.02694 

Orr A‡, Gualdieri R†, Cossette ML†, Shafer A, Stotesbury T*.  Whole bovine blood use in forensic research: Sample preparation and storage considerations. Science & Justice. 2021 May 1;61(3):214-20. https://doi.org/10.1016/j.scijus.2021.02.004


Plante J‡, Orr A†, Albrecht I, Wyard L, Boyd P, Stotesbury T*. Drip stains formed on ice and snow: an observational study. Canadian Society of Forensic Science Journal. 2021 April 1;54(2):1-6. https://doi.org/10.1080/00085030.2021.1880726


Stotesbury T*, Cossette ML†, Newell-Bell T†, Shafer ABA*. An exploratory time since deposition analysis of whole blood using metrics of DNA degradation and visible absorbance spectroscopy. Pure and Applied Geophysics. 2021 Mar 1;178(3):735-43. https://doi.org/10.1007/s00024-020-02494-0


Tiessen M†, Stock NL*, Stotesbury T*. Untargeted SPME-GC-MS characterization of VOCs released from spray paint. Journal of Chromatographic Science. 2021 Feb;59(2):103-11. https://doi.org/10.1093/chromsci/bmaa082


Cossette ML†, Stotesbury T*, Shafer ABA*. Quantifying visible absorbance changes and DNA degradation in aging bloodstains under extreme temperatures. Forensic Science International. 2021 Jan;318(1):110627. https://doi.org/10.1016/j.forsciint.2020.110627


Yeh K†, Stock NL*, Burr W*, Stotesbury T*. Preliminary analysis of latent fingerprints recovered from underneath bloodstains using Matrix Assisted Laser Desorption/Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry Imaging (MALDI FT-ICR MS). Forensic Chemistry. 2020 Aug;20(1):100274. https://doi.org/10.1016/j.forc.2020.100274


Beresford D*, Stotesbury T*, Langer S, Illes M, Kyle C, Yamashita B. Bridging the gap between academia and practice: perspectives from two large-scale and niche research projects in Canada. Science & Justice 2020 Jan 1;60(1):95-8. https://doi.org/10.1016/j.scijus.2019.09.005


Boos† K, Orr A‡, Illes M*, Stotesbury T*. Characterizing drip patterns in bloodstain pattern analysis: An investigation of the influence of droplet impact velocity and number of droplets on static pattern features. Forensic Science International. 2019 Aug;301(1):55-66. https://doi.org/10.1016/j.forsciint.2019.05.002


Orr A‡, Stotesbury T*, Wilson P*, Stock NL*. The use of high-resolution mass spectrometry (HRMS) for the analysis of DNA and other macromolecules: a how-to guide for forensic chemistry. Forensic Chemistry. 2019 June;14(1):100169. https://doi.org/10.1016/j.forc.2019.100169


Orr A†, Illes M*, Beland J*, Stotesbury T*. Validation of Sherlock, a linear trajectory analysis program for use in bloodstain pattern analysis. Canadian Society of Forensic Science Journal. 2019 Mar 4;52(2):78-94. https://doi.org/10.1080/00085030.2019.1577793

Polacco S‡, Wilson P*, Illes M, Vreugdenhil A, Stotesbury T*. Luminol reagent control materials in bloodstain pattern analysis: A silicon sol-gel polymer alternative. Forensic Chemistry. 2019 March;12(1):91-8. https://doi.org/10.1016/j.forc.2019.01.002


Polacco S‡, Illes M, Wilson P*, Stotesbury T*. Quantifying chemiluminescence of the forensic luminol test for ovine blood in a dilution and time series. Forensic Science International. 2018 Sept;290(1):36-41. https://doi.org/10.1016/j.forsciint.2018.06.026


Illes M*, Bruce C, Stotesbury T, Hanley-Dafoe R. A study on student engagement within a forensic science course. Journal of Multidisciplinary Research at Trent. 2018 Aug 28;1(1):55-70. https://ojs.trentu.ca/ojs/index.php/jmrt/article/view/279


Shetranjiwalla S, Vreugenhil A*, Stotesbury T. Waterborne epoxy-thiol silica sol-gel coatings: impact of crosslinking on corrosion protection. Journal of Sol Gel Science and Technology. 2018 July 28;87(2):504-13. https://doi.org/10.1007/s10971-018-4739-2


Polacco S†, Illes M*, Stotesbury T. The use of a forensic blood substitute for impact pattern area of origin estimation via three trajectory analysis programs. Canadian Society of Forensic Science Journal. 2018 May 25;51(2):1-9. https://doi.org/10.1080/00085030.2018.1463274

Stotesbury T, Illes M*, Wilson P*, Vreugdenhil A*. The application of silicon sol-gel technology to forensic blood substitute development: investigation of the spreading dynamics onto a paper surface. Forensic Science International. 2017 June;275(1):308-13. https://doi.org/10.1016/j.forsciint.2017.03.020

Stotesbury T, Illes M*, Vreugdenhil AJ*. High-speed video analysis of crown formation dynamics of controlled weapon-head impacts onto three surface types. Canadian Society of Forensic Science Journal. 2017 Feb;50(2):64-73. https://doi.org/10.1080/00085030.2017.1281628

Stotesbury T, Illes M*, Wilson P*, Vreugdenhil AJ*. The application of silicon sol-gel technology to forensic blood substitute development: mimicking aspects of whole human blood rheology. Forensic Science International. 2017 Jan;270(1):12-9. https://doi.org/10.1016/j.forsciint.2016.11.012


Stotesbury T, Taylor MC*, Jermy MC*. Simulated transfer dynamics of blood onto cardboard and comparison to simple fluids for blood substitute development and assessment. Canadian Society of Forensic Science Journal. 2016 Dec;50(1):30-41. https://doi.org/10/1080/00085030.2017.1258209

Stotesbury T, Taylor MC*, Jermy MC*. Passive drip stain formation dynamics of blood onto hard surfaces and comparison to simple fluids for blood substitute development and assessment. Journal of Forensic Sciences. 2017 Jan;62(1):74-82. https://doi.org/10.1111/1556-4029.13217


Illes M*, Bruce C, Hanley-Dafoe R, Stotesbury T. Novel technological approaches for pedagogy in forensic science: A case study in bloodstain pattern analysis. Forensic Science Policy & Management: An International Journal . 2016 Oct 11;7(3-4):87-97. https://doi.org/10.1080/19409044.2016.1218573

Stotesbury T, Bruce C, Illes M*, Hanley-Dafoe R. Design considerations for the implementation of artificial fluids as blood substitutes for educational and training use in the forensic sciences. Forensic Science Policy & Management: An International Journal. 2016 Oct 11;7(3-4):81-6. https://doi.org/10.1080/19409044.2016.1218574

Stotesbury T, Illes M, Jermy MC*, Taylor MC*, Wilhelm J, Vreugdenhil AJ. Three physical factors that affect the crown growth of the impact mechanism and its implications for bloodstain pattern analysis. Forensic Science International. 2016 Sept;266(1):254-62. https://doi.org/10.1016/j.forsciint.2016.05.038


Illes M*, Stotesbury T. Development of an application method for a zone stain selection model in bloodstain pattern analysis. Canadian Society of Forensic Science Journal. 2016;49(1):19-25. https://doi.org/10.1080/00085030.2015.1108541

Stotesbury T, Illes M*, Vreugdenhil AJ*. An impact velocity device design for blood spatter pattern generation with considerations for high-speed video analysis. Journal of Forensic Sciences. 2016 Mar;61(2):501-8. https://doi.org/10.1111/1556-4029.12975


Stotesbury T, Illes M*, Wilson P*, Vreugdenhil AJ*. A commentary on synthetic blood substitute research and development. Journal of Bloodstain Pattern Analysis. 31(2):3-6.


Kabaliuk N, Jermy MC*, Morison K, Stotesbury T, Taylor MC*, Williams E. Blood drop size in passive dripping from weapons. Forensic Science International. 2013 May 10;228(1):75-82. https://doi.org/10.1016/j.forsciint.2013.02.023


Zhou Y, Stotesbury T, Dimock B, Vreugdenhil AJ, Hintelmann H*. Novel silica sol-gel passive sampler for mercury monitoring in aqueous systems. Chemosphere. 2013 Jan;90(2):323-8. https://doi.org/10.1016/j.chemosphere.2012.07.022


Stotesbury T, Illes M*, Vreugdenhil A*. Investigation of physical effects of Acid Yellow 7 enhancement on dark and non-porous surfaces in impact pattern area of origin estimation. Canadian Society of Forensic Sciences Journal. 2012;45(1):22-35. https://doi.org/10.1080/0085030.2012.10757182

Nowack L, Collins R, Li G, Carter AL, Illes M, Gorman V, Larocque S, Stotesbury T, Yamashita B*. Computer analysis of bloodstain patterns on angled surfaces. Journal of Bloodstain Pattern Analysis. 27(3):17-28.



Vreugdenhil AJ, Stotesbury TE, inventors; TRENT UNIVERSITY, assignee. Anti-corrosion sol-gel material. United States patent US 10,457,562. 2019 Oct 29.